Dado un triángulo y un punto arbitrario dentro del triángulo, trace las perpendiculares a los lados del triángulo que pasan por el punto elegido. Cada perpendicular corta uno de los lados en un punto. Use esos puntos para construir otro triángulo y repita el paso anterior usando el mismo punto. Así construirá un segundo triángulo. Si repite una vez más el procedimiento, obtendrá un tercer triángulo anidado. Se puede demostrar (Ejercicio: Demostrarlo) que este tercer triángulo es geométricamente semejante al triángulo inicial (es decir, el producto de transladarlo, rotarlo, reflejarlo y agrandarlo o achicarlo proporcionalmente — si sirve de algo, recuerde que dos triángulos son semejantes si tienen los mismos ángulos interiores). Aquí hay un ejemplo: Esto sale si su navegador necesita reconsiderar urgentemente su lugar en el mundo. Use Firefox o Chrome.

El triángulo rojo es semejante al triángulo negro. Con el mouse puede mover tanto los vértices del triángulo inicial como el punto interior para intentar convencerse de que la semejanza no depende ni del tipo de triángulo original ni del punto elegido.

Como mi javascript (aquí el código) es torpe, no he logrado encontrar una forma buena de evitar que el punto elegido quede fuera del triángulo (por cierto: si el punto se sale del marco, recargue (Ejercicio/Duda: ¿Cómo evitar que el punto abandone el marco?)). Sin embargo, jugando con él, noté que realmente el resultado es cierto incluso si el punto está afuera del triángulo inicial y la construcción se replantea usando las líneas que generan los lados del triángulo en lugar de los lados en sí (que es como lo había calculado, de cualquier modo). Haga la prueba: saque el punto del triángulo. Afuera del triángulo original el triángulo rojo crece aunque las limitaciones de espacio me impiden constatar si alcanza un tamaño máximo (o si sigue creciendo hasta obtener el tamaño del triángulo original en el límite, por ejemplo (o si crece ilimitadamente)). Si el punto se restringe de nuevo al triángulo original, hay un tamaño máximo posible para el tercer triángulo (Ejercicio: ¿Dónde se obtiene? ¿De qué depende? ¿Pasa lo mismo afuera?). Otra duda/ejercicio: ¿En qué puntos se logra que el tercer triángulo tenga exactamente la misma posición que el triángulo original (es decir, sólo transladado y escalado, sin rotarlo ni reflejarlo)?

Aparentemente, este fenómeno es cierto también para polígonos (asumo convexos (?)) de cualquier número de lados: con un polígono de N lados se requiere repetir el procedimiento N veces para obtener un polígono semejante al original. (Ejercicio: ¿Cuál es la demostración general?)

Encontré este resultado en Futility Closet, donde transcriben un poema de una tal Mary Pedoe que usa la construcción como inspiración:

Begin with any point called P
(That all-too-common name for points),
Whence, on three-sided ABC
We drop, to make right-angled joints,
Three several plumb-lines, whence ’tis clear
A new triangle should appear.

A ghostly Phoenix on its nest
Brooding a chick among the ashes,
ABC bears within its breast
A younger ABC (with dashes):
A figure destined, not to burn,
But to be dropped on in its turn.

By going through these motions thrice
We fashion two triangles more,
And call them ABC (dashed twice)
And thrice bedashed, but now we score
A chick indeed! Cry gully, gully!
(One moment! I’ll explain more fully.)

The fourth triangle ABC,
Though decadently small in size,
Presents a form that perfectly
Resembles, e’en to casual eyes
Its first progenitor. They are
In strict proportion similar.

Ejercicio: traducirlo.